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Abstract—An asymptotic analysis is presented for the power law creep of a matrix containing
discontinuous rigid aligned fibers. The fibers analysed have a high aspect ratio. As a result, the fiber
length is much greater than both the fiber diameter and the spacing between neighboring fibers. For
this situation, flow around the fiber ends can be neglected when the creep strength is being calculated.
When the matrix is not slipping on the fiber surface or is nearly stuck, shearing flow dominates the
behavior. The radial gradient of shear stress is balanced by the axial gradient of hydrostatic stress.
Longitudinal, radial and circumferential deviatoric stresses are negligible. The resulting power law
creep rate of the composite material is inversely proportional to the fiber aspect ratio raised to the
power 1+ 1/n where n is the creep index. The fiber volume fraction also influences the creep rate.
‘When the matrix slips freely on the fiber surface, or nearly so, stretching dominates the matrix flow.
In this situation, the composite creep strength is not much better than the unreinforced matrix.

NOMENCLATURE

Note : superposed caret indicates a physical variable; a symbol without a caret is normalized and dimension-
less, e.g. 4 is the fiber radius, a is 4/5 where & is the unit cell radius.
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M

fiber radius

unit cell radius

matrix creep rheology parameter

function of geometry and creep parameters; controls the creep strength
axial strain rate

function for radial distribution of axial velocity
function controlling hydrostatic stress distribution
fiber half length

interface drag exponent

matrix creep exponent

higher order term in creep strength

radial coordinate

relative creep strength of composite material
scaled creep strength in excess of matrix strength
same as § evaluated in Bao er o/, (1991)
average radial stress

stress deviator

velocity

fiber volume fraction

axial coordinate

Lja fiber aspect ratio

/L small parameter

effective strain rate

zfd

Lib=1/8

interface drag parameter

integration variable

hydrostatic stress

stress tensor

macroscopic axial stress

fiber axial stress

matrix axial stress

tensile equivalent stress

parameter for stress normalization
circumferential coordinate.
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INTRODUCTION

Cell models are popular and effective for estimating the creep strength of metal matrix
fiber reinforced composites and such an approach has been used by Kelly and Street (1972),
Dragone and Nix (1990), Goto and McLean (1991) and Bao et al. (1991b). For aligned
discontinuous fibers, an individual reinforcement is considered embedded in a unit cell of
the matrix material such that the volume ratio of fiber to matrix in the unit cell equals the
average ratio in the composite material. Boundary conditions to cause the deformation are
imposed on the perimeter of the unit cell to enforce periodicity and symmetry. For the creep
response to tensile stresses aligned with the axis of circular fibers, it is sufficient to calculate
the behavior of an axisymmetric cell such as that shown in Fig. 1. The deformation imposed
on the cell forces it to retain its circular cylindrical shape. Each point on the surface of the
cell is free of shear traction. The average transverse stress on the cell is zero and appropriate
conditions are imposed at the interface between the fiber and the matrix material. In the
annotations in Fig. 1 the conditions appropriate to an interface around a rigid fiber without
debonds but with a nonlinear viscous sliding behavior are stated. In general, however, any
physical assumption can be incorporated into the cell model such as fiber elasticity or creep,
debonding of the interface, etc.

Cell models usually require a numerical treatment as undertaken by Dragone and Nix
(1990) and Bao er al. (1991b). However, in certain circumstances an approximate model is
accurate and can be analysed without recourse to complete numerical treatment. This
approach has been used by Kelly and Street (1972) and Goto and McLean (1991). One
such circumstance is when the fibers are aligned and have an aspect ratio which is high and
a volume fraction that is moderate to high. Then the matrix segment around the fiber (with
section ABCD in Fig. 1) is slender and can be readily analysed with approximate flow
fields. In addition, the flow in the remaining matrix segment at the fiber ends does not need
to be analysed accurately because it contributes little to the yield or creep strength compared
to the matrix around the fiber. That is, when the fiber aspect ratio is high, the energy
dissipation in the fiber end regions during matrix creep is negligible compared to the energy
dissipation rate in the matrix surrounding the fiber. The creep strength is directly related
to the energy dissipation rate, so it can be analysed by caiculating the major contributions
to the energy disstpation rate. In this paper, that is achieved by analysing the creeping flow
of the matrix adjacent to the fiber sides. If this approach is unsatisfactory in a particular
case, it can always be rectified by considering longer fibers, thereby making the fiber end
regions relatively less important. In this sense, the analysis can always be justified by taking
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Fig. 1. Unit cell for matrix creep analysis.
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the asymptotic limit of extremely long fibers. However, the analysis is proposed as being
justifiable for fibers with a range of finite aspect ratios.

The issue has been studied by Bao et al. (1991a) for layered composites with perfectly
plastic matrices. Bao et al. found that less than 10% of the yield strength is due to the end
region when the volume fraction of rigid reinforcements is 25% and their aspect ratio is
100. For smaller aspect ratios the contribution from the end region is a higher fraction but
can be modeled in an ad hoc manner as was demonstrated by Bao et al. (1991a). In addition,
the aspect ratio of the cell relative to the aspect ratio of the fiber is known to affect the
prediction of strength significantly which was demonstrated by Bao ez al. (1991b). Thus, it
is likely that the choice of aspect ratio of the cell will also influence how much of the strength
is due to the matrix material around the fiber compared to the amount due to the material
at the fiber ends. For example, choosing the aspect ratio of the cell to be the same as the
aspect ratio of the fiber, as Bao er al. (1991a) did, is likely to exaggerate the importance
of the fiber end region for high aspect ratio cases. A perhaps more sensible choice, in which
the distance between the fiber and the cell edge is the same at the end and on the side, is
likely to diminish the importance of the matrix at the fiber ends and so the 10% contribution
mentioned above is probably an overestimate. At the other extreme of the rheology, namely
a linearly viscous matrix, an argument can be made that as well as fiber end regions
occupying relatively smail volumes of the total composite microstructure, any non-
uniformity of flow which they induce will be confined to the fiber end region by a St Venant
effect. Thus, for all types of matrix an analysis concerned only with the matrix material
surrounding the fibers circumferentially can be justified in certain cases.

In particular, the problem of a high aspect ratio rigid fiber embedded in a power law
creeping matrix can be analysed in terms of the matrix material around the fiber. The cell
shown in Fig. 1 will be used. The fiber is bonded to the matrix so that the radial velocity
at the fiber is zero. However, it is assumed that the bond, or thin layer of interphase material
at the interface, has a power law rheology of its own which allows slip of the matrix relative
to the fiber. The end of the fiber is bonded strongly to the matrix as well, so that matrix
incompressibility forces a net matrix flow parallel to the fiber. The axisymmetric quasistatic
creeping response to an axial stress is considered. A power law rheology is assumed so that
the analysis represents the steady state creep of metal or ceramic matrices around rigid (e.g.
ceramic) fibers. ,

PROBLEM FORMULATION

The domain of the problem is the axisymmetric region with section ABCD in Fig. 1
(d <7< b;0 < 2 < L). In cylindrical polar coordinates, the governing equilibrium equa-
tions neglecting inertia and body forces are

a;;’+“"—:“"‘3+5%=0, 1)
do,, o, 0o,
ar +T+6 0z =0 @
where & is a scaled stress such that
& = Zo, €)

with & being the Cauchy stress and £ a scaling parameter to be discussed later. The
components r and z are scaled measures of position defined by

F=br 4)

and
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i= Lz, &)
where 7, Z, b and L are specified in Fig. 1. The parameter § is such that

é=b/L, (6)
and in the problems to be analysed is much less than 1. The choice of differential scaling

for r and z introduces a coordinate stretching transformation (Van Dyke, 1975) which will
be useful in the subsequent analysis.

The matrix creeps with a power law incompressible rheology given by
efij = %Bégw IS;ijs (7)

where é is the strain rate, S is the deviatoric stress given by

where ¢(= 6,./3) is the hydrostatic part of the stress, &, is the effective stress such that

=

6. = /3855y, ©
and B is a material constant which is, however, dependent on temperature. Note that in

uniaxial stress the axial strain rate equals B times the nth power of the stress. In terms of
scaled variables, the creep law can be written as

av, _

g - %O.Zv ESH) (IO)
=301 S, an
ov,
5 5% = 101 'S,,, (12)
oz
dv v, .
it e g i3
ar +6 pe 3ol ‘0, (13)
where ¥ is the velocity and
¥ = BBX". (14)

On AB (z = 0) the boundary conditions by symmetry are
v.{r,0) =0, (15)
6,.(r,0) =0. (16)
On AD (r = a = 4/b) one boundary condition is
v{a,zy =0, a7

while the slip condition (see Fig. 1) becomes
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v.(a,2) = o7;/u, (18)
where

u = jBbz—", (19)

and fi is a slip parameter for the interface. It should be noted that the last boundary
condition can represent a variety of physical situations. One possibility is that there is a
thin but distinct interphase of thickness 7 so that ¥,(a, z)/? is the shear strain rate in the
interphase. Equation (18) then implies that the interphase is subject to power law creep but
with an exponent m and the coefficient in the creep law is 1/(3""* "?jif) replacing B in eqn
(7). Another possibility is that there is no interphase but instead the fiber has a rough
surface over which the matrix must flow even though the bond between the matrix and the
fiber is relatively weak in shear. In that case, the index m would equal n and the slip
parameter /i would depend on the roughness of the fiber surface which would provide drag.
On BC (r = 1) the boundary conditions are

0.(1,2) =0 (20)
and
v,(1,2) = —149, @n
where
é = BE"S 22

is the axial strain rate. The condition in eqn (21) means that the scaled axial strain rate is
equal to 4. This choice is arbitrary, though convenient. As a consequence, eqn (22) estab-
lishes X in terms of é, the axial strain rate in physical variables. The boundary condition,
eqn (21), states that the unit cell remains a cylinder of uniform diameter. As a result, the
normal stress o,, is not uniformly zero on r = 1. However, the average of 6,, on r = 1 can
be set to zero so that

jl 6,(1,2)dz=0 23)
0

to ensure that the transverse stress is approximately zero. The approximation arises because
the cell extends a small distance above C, but that portion is neglected. The boundary
condition equation (23), can be met through adjustment of the hydrostatic stress.

Note that no explicit boundary conditions are posed for CD. The average stress there
will be of interest and determines 6,. The creep strength S of the composite material is
defined as the average axial stress in the composite at a given axial strain rate divided by
the stress in the matrix alone at the same axial strain rate. That is

S= 6&(£)/(£/B) l/"9 (24)

where 6, is a function of the axial strain rate é.

ASYMPTOTIC ANALYSIS

A perturbation series solution will be developed. It will have much in common with
the outer solution for a plane strain power law squeeze film due to Johnson (1984). In
addition, there are boundary layers, but fully matched solutions will not be established in
them. In the outer solution for the fiber problem, the matrix flow is dominated by shearing
and the shear stress can be expanded in integer powers of §, so that
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6,. = 0¥ 4+ 80V + O(5?). (25)
As a consequence of eqn (13), v. is O(1) at leading order so
v, = o'V 460V + 0. (26)
Incompressibility [i.e. the sum of eqns (10)—(12)] then implies that
v, = o0tV +0(5%), (27)
and, apart from g,,, S;; is O(9), so
S, =381+ 0(5%), (28)
etc. Any gradient of o,. in the r direction must be balanced by a gradient of ¢_; in the :
direction. For this to be possible, the stress o.. must be O(1/8) so that the contribution of

the longitudinal gradient of a.. to eqn (2) is O(1) which is the same order of magnitude as
the contribution of the shear stress gradient in eqn (2). This suggests

1
0= 5ot o+ 00) (29)

so that the hydrostatic stress is an order of magnitude larger than the deviatoric stress.
The leading order governing equations can now be stated. With terms of higher order
omitted, it is found that eqn (1) gives

(30'( 3] )
=0, (30)
while eqn (2) provides
0l @ gtV
e o o
The creep relationship of eqn (13) gives
!0
=3y . (32)
where
o = /3]0, (33)
while incompressibility provides
ootV Y ool
o Tt e =0 9

Equations (15)-(23) give the boundary conditions
vi"(r,0) = 0, (35)
a?(r,0) =0, (36)

v (a,z) =0, (37
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v%(a,2) = (62", (38)
(1,2 = -3, (39
oP(1,2) =0 (40)
and
i
J o-1(1,2)dz = 0. (41
[}
Solution
Equation (30) shows that ¢~V is independent of r. Therefore, integration of eqn (31)
subject to eqn (40) gives
1/1 do= Y
CR L . 42
o =3 (r r) dz “2)
It will be confirmed that de(~P/dz is positive for z > 0 and thus so is 9. Consequently
eqn (32) shows that
@ 3(n+ 12 1 " do_(— ]))n
R : 43
PP (r ’) ( dz 43)

Integration of eqn (42) with eqn (37) provides

1 /1 dgt-P doi-\
[ PEARICS R

3(Ix+ 02 fr 1 7t
F(r,a,n) = T j (E —«p) dp. 45)

where

Differentiation of eqn (44) with respect to z provides the axial strain rate which is inserted
into eqn (34). Integration of eqn (34) with respect to r combined with boundary condition
equation (37) then gives

1 1 " { a? d {de=PY* 1 (" d {det=VY
M — g fc _= _Z fad
o p2mt! (a a) (r r) dz( dz ) r_[, pF(p,a,m) dp dz( dz ) (6)

The boundary condition specifying the strain rate, eqn (38), then provides the nonlinear
differential equation

d de" DY  (1—g¥)m+! (do““”)’” 1
&[G(a, n)( dz ) + p2mtign dz N “7)

where
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i

Gla,n) =J pF(p,a,n)dp. {48)

This can be integrated once and boundary condition equation (36) along with eqn (42) can

be used to give
da.(~1) " (IMaZ)m-f-l (da(—1)>m
G(‘"”)< &z )+ 2\ Td ) T

This is hard to solve in general when m # n except when n = 2 and m = 1 and vice versa.
Substantial insight and a degree of generality can be retained by choosing m = n. As
discussed previously, this case represents that of a well bonded fiber—matrix interface with
a rough fiber surface at a temperature sufficiently high to give rise to a negligible shear
strength of the bonded interface. The resistance to slip arises from the drag induced by the
creep of the matrix along the rough fiber suface. Alternately, it could represent the case of
an interphase with the same creep index as the matrix but with a different creep coefficient.
The approach of using m = n permits the study of the effect of a weak interface and some
general insights are obtained. With m = n, eqn (49) provides

(49)

[ 2]

dgt b 2\t
== (5)" &
where
1— 2yn+1
D(a,n) = 2G(a, n)+ * #2“”3,, (51)
Integration of eqn (49) and use of egn (41) reveals that
n
> t+1/n .
gon - mtl (52)

The remaining significant terms in the solution are then

1/1 z \U
O = - — — 1, 53
7 =) (r r) (D> 53)
1 /{1 ' z
O e |~ — — 54
v, [#2,, (a a) +F(r,a, n)] D (54)

1 1 7 2 1 4 1
oD = -[;En+—, (3 —~a> (r- %;)-f—;'[ pF(p,a,n)dp]ﬁ. (55)

Thus the key assumption made by Kelly and Street (1972) that the velocity in the z direction
is proportional to z is correct to leading order. However, now the dependence on r has been
established too.

Boundary layer

It is possible to proceed with the solution to higher order terms and so establish the
small corrections involved but this will not be done here. However, it should be noted that
boundary layers are involved at z = 0 and at r = 1. The shear stress to leading order is zero
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at those locations and thus so is the effective stress o.. In the pure power law rheology being
used in this problem, this makes the matrix rigid to leading order at z=0 and r = 1.
However, material is deforming at those locations and as a result the higher order terms in
the deviatoric stress in the perturbation series diverge there. To correct this, a boundary
layer analysis is required. However, the result of Johnson (1984) for the plane strain squeeze
film indicates that the boundary layers are passive and so do not disrupt the leading order
outer solution. Consequently, the leading order outer solution equations (52)—(55) are valid.
The boundary layer analysis provides a significant correction term at higher order in the
outer solution. This correction term has not been worked out. However, the boundary layer
at z = 0 can be analysed and terms for the correction estimated there. An overall axial
balance of stress then provides the net resultant stress for the composite material and
therefore an estimate to higher order of the creep strength of the composite. The details of
the boundary layer results are developed in the Appendix.

COMPOSITE MATERIAL CREEP RESPONSE

We now have an estimate for the average axial stress at z = 1 in the cell. This is given
by eqn (52) at z = 1 divided by & plus the correction 6"/ arising from the analysis of the
boundary layer at z = 0 [see eqns (A16), (A22) and (A28)]. The correction is required at
z = 1 to balance the tension in the boundary layer at z = 0. Thus, the average stress at
z = | in normalized variables is

n 1n
6M(2n+I)D‘7" +8'"N, (56)

Clearly, as long as D is not large, the first term will be the largest contribution to &, (see
Fig. 1) which represents the creep stress of the composite material. Additional contributions
to &, will arise from the effects of matrix flow around the fiber end. This term may be of
the same order of magnitude as the boundary layer term ¥, but the fiber end flow term is
difficult to estimate. Although it may be inconsistent, we will simply omit the fiber end flow
term but include the boundary term. It is hoped that the result will then be meaningful for
low fiber volume fractions where the fiber end flow term will tend to be small. In any case,
as long as D is not large, the discrepancy relates only to a higher order term and the creep
behavior predicted by the leading order term in eqn (56) is still reliable. The omission will
be more serious in the case of low drag fiber-matrix interfaces with moderate to high
volume fractions of fibers because D becomes large in that case. Then the fiber end term
will be just as significant as the leading term in eqn (56). The validity of the model is then
doubtful.
The estimate for 4, is obtained from eqn (56) in physical variables. Accordingly

. sIn
G, = Fant DD +INS'"
6\ Aty
= (T;) [(2n+ now N ] 57

where 4 = L/b. In turn, the creep strength is

l]+l/nn

S= @n+1)D7

+N. (58)

Note that the term S functions as a dimensionless reference stress (Leckie, 1986) for the
creep behavior of the composite as in
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é = B(6,/S)". (59)

The results will be left in the form presented in eqns (57) and (58) even though the
dependence on parameters like fiber volume fraction and fiber aspect ratio is not apparent.
The forms presented, in terms of @ and 4, are more versatile with the advantage that there
is no asumption dependent conversion from a and 4 to volume fraction and fiber aspect
ratio. However, such conversions can be made easily by the user of the results. For example,
Kelly and Street (1972) neglected the ends of the unit cell and assumed that 4 is half the
nearest neighbor center to center spacing in a hexagonal array of fibers. In that case

a=alb=(2/3Vn)"?, (60)

where F;is the fiber volume fraction. On the other hand, if the unit cell is assumed to have
the same aspect ratio as the fiber, then

a= Ve, 61

Therefore, it is best to avoid any conversion and leave the user of the results to choose an
approach which is appropriate to the material of interest.
In any case, since

A= Lib = (Lja)ajb) (62)

4 will be proportional to the aspect ratio of the fiber « = L/4. Therefore, the creep strength
S, eqn (58), depends relatively strongly on the fiber aspect ratio, being proportional to
«'*'" This ranges from a quadratic dependence for linear viscosity to nearly linear for
high n. This dependence was identified by Kelly and Street (1972). As the fiber volume
fraction increases, ¢ will increase and be around unity for fiber volume fractions around
unity. This will cause D to become very small or zero, predicting very large or infinite creep
strengths. This locking up is present in the model of Kelly and Street (1972), occurring at
V: = 0.91 in that case, which is when fibers in a hexagonal array touch each other.

As the fiber volume fraction approaches zero with y finite, a will disappear and so will
the creep strength predicted by the first term in eqn (58). The second term, N, then provides
the creep strength, which will be unity according to eqn (A22). Returning to the general
case, consider what happens if u — 0. This is the zero drag case and egn (51) makes it clear
that D — oo, Consequently, the creep strength is then given by N, expressed in this case by
eqn (A28). Results for N for several values of n are plotted in Fig. 2. The values are less
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Fig. 2. Creep strength of a material with zero drag between the fiber and the matrix,
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than or equal to unity, indicating that the composite will be weaker than the matrix alone.
This effect occurs because the fibers act only to fill cylindrical holes in the matrix and the
composite behavior represents the creep of a matrix filled with such cylindrical holes. It can
be seen in Fig. 2 that N is approximately given by 1—V;, confirming this effect. This result
is not exact because the effect of flow around the fiber end has been neglected. The true
result is probably 1 — ¥; plus a small amount accounting for the fiber end effect. However,
the magnitude of the contribution due to flow around the very end of the fiber will not
depend to any great extent on the aspect ratio of the fiber. Thus, for long, discontinuous
fibers, the creep strength will be modest if the matrix is free to slip without drag relative to
the fiber. This effect was apparent, although not emphasized, in the model of Kelly and
Street (1972).

It is difficult to know realistic physical values of u. In addition, the model for interface
drag with m = n s of limited value although it is very similar to a form implied in the model
of Kelly and Street (1972). As they pointed out (in terms of their interface sliding parameter
but the implications are the same), a given value of u (less than oo) will have a stronger
effect on the creep strength of a material with a low » compared to a high »#. This arises
because S is controlled by D~ and u enters the creep strength to leading order through
D. However, the effect of a more physically realistic slip law remains to be investigated.
For example, interface diffusion tends to occur readily in metal matrix composites at creep
temperatures. This will tend to induce slipping with a linear rheology, i.e. m =1 in eqn
(18).

Finally, we can consider the creep strength in detail for the no slip case ¢ = c0. This
is accomplished by consideration of § = (S—1)/a'*"" computed from eqn (58). This
parameter is the excess creep strength over the matrix strength normalized to make it
independent of «. The result is plotted as a function of a? in Fig. 3 for several creep
exponents. For comparison, the equivalent parameter from the model of Kelly and Street
(1972) is plotted as well. For the latter model, the volume fraction has been converted to a
by use of eqn (60). The result has the form

51( — (S_ 1)/al+l/n

2 1/n n a 1/n a2
=<§> 2n+1<1—a) 1-a (63)

It can be seen in Fig. 3 that there are significant differences between the two models.
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Fig. 3. Excess creep strength of a material with no slip between the fiber and the matrix. The result
is normalized by the fiber aspect ratio raised to the power 1 +1/n.



1818 R. M. McMEEKING
FIBER STRESSES

Fiber stresses are important because the reinforcements can crack and degrade the
creep strength when the stress exceeds the fiber strength as observed by Weber et al. (1993).
In addition, Sancaktar and Zhang (1990) have demonstrated that high shear stresses on the
interface can cause interphase and matrix cracking. The shear stress at the interface between
the matrix and the fiber is directly related to the gradient of the average axial fiber stress
along the fiber. The average axial stress at any point in the fiber can be computed from a
net balance of forces in the axial direction. This requires

G, = a’6(5)+ (1 —a*)én (%) (64)

at any position £ where 6; is the average axial fiber stress at 7 and 4,, is the average axial
matrix stress at Z. From eqn (52) we have

[(i l-{-ijn- " 2’}+”n
g)w I It 1

6'm(f) = (E (l+l/n)D)/n

+Nji. (65)

Given eqn (57), it follows that

ef‘ i/n '{h}-]in n i l_az 3 1+ ijn H
af(z)::(_é) {D”” n+l[5§* a? (Z) *2n+1]+N}' (66)

The highest value is at £ = 0 where

67 = 6:(0)
ef in Jitln ‘1 n
- (E) [W n+i (;f - m)”]- ©D

Neglecting N, which will be small compared to other terms when / is large, we find

67 2n+1 —a‘*n
R e ©8)

Thus the maximum axial fiber stress can be obtained approximately by multiplying the
composite stress by a factor given by a fairly simple formula. For example, with g? equal
to a quarter (i.e. the fiber diameter is equal to the fiber spacing), the ratio is (Tn+4)/(n+1)
which, for example, is equal to 6.4 for n = 4. It is interesting that the ratio is independent
of the aspect ratio of the fiber. This, however, only applies if the fiber is long enough, say
with an aspect ratio of 5 or greater.

A further interesting point is that the minimum matrix stress (at Z = 0) is compressive.
Expressed as a fraction of the composite stress, the minimum matrix stress o = ¢,,(0) is

gmn n
Gm” T 69
G P (69)

independent of the volume fraction and the fiber aspect ratio (given that the fiber aspect
ratio is high enough).
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COMPARISON WITH FINITE ELEMENT RESULTS

There are few finite element results available in detail for comparison. The most useful
is the analysis by Dragone and Nix (1990), who treated an aluminum alloy with 20% by
volume of SiC fibers. A unit cell approach was adopted and calculations performed for
n = 4. The fiber was perfectly bonded to the matrix and so the relevant comparison is with
our results when y = c0. A number of features found in the asymptotic analysis are apparent
in their steady-state solution for « = 5, a somewhat lower aspect ratio than we would prefer
for comparison. The stress in the matrix around the fiber is dominated by the hydrostatic
stress with the hydrostatic component apparently 25 times the longitudinal deviatoric stress.
The hydrostatic stress in the matrix varies almost linearly down the length of the fiber. (Our
analysis predicts a variation with 7"-**, but it would be difficult to distinguish this from a
linear behavior in numerical results.) The hydrostatic stress adjacent to the fiber is inde-
pendent of distance from the fiber. The axial stress at the fiber end is about 25% higher
than the composite stress indicating an effect of flow around the end of the fiber which we
have neglected. The aspect ratio of the cell is equal to the aspect ratio of the fiber. Therefore,
by eqn (61), a> = V. For V; = 0.2, this gives a® = 0.34. For this value of a2, we predict
4.5 for 67**/6, from eqn (68) and —0.8 for 6%"/6, from eqn (69). Dragone and Nix (1990)
find these ratios at steady state to be 4.9 and — 1.2, respectively. Thus even for the low
aspect ratio fiber the asymptotic analysis is reasonably good. We suspect that most of the
discrepancy is due to the stress arising from flow around the fiber ends. When the difference
between the composite stress and the stress at the fiber end is factored out, our ratios predict
the Dragone and Nix (1990) stress values almost exactly. Thus, for longer fibers, we believe
our estimates will be quite accurate even without adjustment.

The steady-state strain rates computed by Dragone and Nix (1990) at 80 MPa for
fibers with aspect ratios 5, 7 and 10 are listed in Table 1. Also given is a strain rate for an
aspect ratio of 20 obtained by extrapolation of the transient results. The matrix steady
creep law used by Dragone and Nix (1990) is our eqn (7) with B = 2x 10~ ! when strain
rate is given in units of s~ ' and stress in MPa; as noted before, n = 4. The finite element
creep strength is computed from eqn (24) and the asymptotic result from eqn (58) with
u = oo and a*> = V¥? = 0.34 as used in the finite element results. N was taken to be 1 in
eqn (58); there is reasonable agreement. The Kelly and Street (1972) predictions for creep
strength, based on our eqn (63) with N = 1, are also given in Table 1 under the heading
“shear lag”. They are well below the other results. Dragone and Nix (1990) provide
additional results in which the aspect ratio of the cell is varied and the asymptotic solution
also agrees reasonably well with those.

Another comparison can be made with the finite element results of Bao et al. (1991b).
The comparison is made in Table 2. One feature in the results of Bao et al. (1991b) is the
contrast with the results of Dragone and Nix (1990). Bao et al. (1991b) predict lower creep
strengths as can be seen in the results for n = 4 in Table 2. This suggests that either Dragone
and Nix (1990) or Bao et al. (1991b) are in error. However, the asymptotic analysis
consistently predicts higher strengths than Bao et al. (1991b). The substantial differences are
probably due to the contribution to the creep strength in the finite element results arising
from the fiber end region. The cell length in the finite element calculations is 1/V}/* times
the fiber length. The portion of the cell beyond the fiber ends as a fraction of the whole cell

Table 1. Comparison of steady-state creep results from the finite element calculations of Dragone and Nix (1990)
and the asymptotic solution. The results are for 20% SiC fibers in 6061 Al at 80 Mpa. ( ) = extrapolated

Fiber aspect ratio o Steady creep rate Creep strength S

Finite element results Finite elements Asymptotic Shear lag
(Dragone and Nix) (Dragone and Nix) analysis (Kelly and Street)

S_‘

5 3.5%x 1078 39 4.5 2.7
7 1x10-% 5.3 6.4 3.6
10 1.5%10°° 8.6 9.4 5.0

20 (7% 10711 (18.5) 21 10.5
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Table 2. Compar.ison of creep strength calculated by Bao et a/. (1991b) by finite elements with the asymptotic
solution. The adjusted column lists § = I+ ¥*(S—1) based on the asymptotic solution

Fiber volume Fiber aspect Creep index
fraction V, ratio a n Creep strength S
Finite
elements Asymptotic
(Bao et al.) analysis Adjusted §
0.1 5 5 1.8 2.5 1.7
0.1 10 1.6 22 1.5
0.1 10 5 2.4 4.3 2.5
0.1 10 10 2.1 3.5 2.2
0.2 5 4 34 4.5 3.1
0.2 5 5 33 4.1 2.8
0.2 5 10 2.9 33 2.3
0.2 10 4 4.7 9.4 5.9
0.2 10 5 4.5 8.1 5.2
0.2 10 10 3.9 5.8 38

lengthis 1 — ¥}/>. This region of the cell experiences relatively unconstrained flow compared
to the matrix material surrounding the fiber circumferentially. An estimate of the effect can
be made by consideration of radial stressing. The portion of the cell around the fiber would
require a radial stress S to produce the same strain rate as unit radial stress would produce
in an unconstrained end region. Therefore, the average radial stress on the whole cell for
the same strain rate is

S=1+V}3(S—1). (70)

This can be converted to an axial stress result by addition of hydrostatic stress. Therefore
eqn (70) with S given by the asymptotic solution provides an estimate for the axial creep
strength of a unit cell with the same aspect ratio as the fiber. In Table 2 it can be seen that
S agrees better than S with the creep strength of Bao et al. (1991b). There are still discrep-
ancies, but the conversion represented by eqn (70) is an approximation at best. It seems
safe to conclude that the asymptotic results should be used for cases where the fiber aspect
ratio is greater than 20 so that fiber end effects are less important.

CONCLUSION

An asymptotic solution has been presented for power law creep of a composite material
containing aligned, rigid, discontinuous, well bonded high aspect ratio fibers. The solution
exhibits several of the features assumed by Kelly and Street (1972) for their shear lag model.
These features include the linearity of the axial velocity with distance along the fiber
and the dominance of the creep strength by the shearing flow in the matrix. However,
asymptotically exact forms for the velocity and stress are provided rather than the estimates
used in the shear lag model. The asymptotic solution provides a model for the creep law of
the composite material. Although the shear lag creep law of Kelly and Street (1972) exhibits
several of the characteristics of the more exact asymptotic creep law, the shear lag model
underestimates the creep strength of the composite material. We think this arises from a
stress averaging procedure used by Kelly and Street (1972) which seems to be faulty.

The dominant characteristic of the creep law predicted by the asymptotic analysis is
that the creep strength is proportional to the fiber aspect ratio raised to the power 1+ 1/n,
where 7 is the creep exponent. In addition, the model shows that fiber—matrix interface slip
can have a disastrous effect on the creep strength of discontinuous fiber composites. If the
interface has no shear strength, the creep strength of the composite is approximately equal
to the creep strength of the matrix alone. This indicates that such a composite material
would creep as fast as the unreinforced matrix at the same applied stress. However, modest
levels of interface drag can be mitigated by very long fibers. The effect can be identified in
eqn (58) where the interplay between interface drag and aspect ratio is evident. A low drag



Power law creep 1821

coefficient, u, gives rise to a high value of D. However, very long fibers will have a large
aspect ratio leading to high values of A. The resulting combination can lead to significant
creep strengths. Thus continuous fibers, even with occasional breaks, can provide good
strengthening even when some interface slip can occur.

The asymptotic solution agrees reasonably well with finite element analyses of the
problem. The solution features in the matrix are very similar. Some adjustments have to be
made to the creep strength for some of the comparisons to account for the fact that the
finite element results were obtained typically for low aspect ratio fibers with unit cells
containing substantial volumes of relatively unconstrained matrix beyond the fiber ends.
With an appropriate adjustment, there is quite good agreement in terms of the creep
strength.
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APPENDIX. BOUNDARY LAYER ANALYSIS

According to Johnson (1984), the outer solution velocity equations (54) and (55) prevail into the boundary
layer at z = 0. Thus in terms of unstretched coordinates with = z/$ in the boundary layer

_él 111 "
UZ—B ;—‘—2; E—a +F(r,a,n) |n (Al

_d 1 1 ' a?\ 1"
uv=-3 P 2= +; pF(p,a,n)dp |. (A2)

An effective strain rate can be computed as

a ", 2 , 2 2 2 2 2 1/2
w3 () (&) 2 (5] w

and then the constitutive law provides

and

v
S = 2gtl-min T
= ol )
v’
Soo = 3851_")/"7, (AS)

SAS 30:13-H
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5 . OO
8. = fet! 7 o (A6)
and
TR
O = 38 a3 (A7)

The hydrostatic stress can be computed from the two equilibrium equations

da S, | Sy—S, do,
- wels Sl (A8)
or ar r on
and
da CG,. 0,
o o s (A9)

Accor.ding to Johnson (1984), on the scale of the boundary layer, the hydrostatic stress at leading order is uniform
and given by eqn (52) with z = 0. Tt is sustained by tractions on the side of the cell enforcing the constraint that
v, = — 36 there. Therefore, the boundary condition for evaluation of the hydrostatic stress is

n 2

o(1,0) = — St Dnt D" -5,.(1,0), (A10)

which ensures that eqn (23) is satisfied at higher order. At higher order, eqn (23) degenerates to a point wise
condition on ¢,, because S,, is uniform at r = I which is a boundary layer also.

Thus by solution of eqns (A8) and (A9) subject to eqn (A10), the stresses can be established throughout the
boundary layer at z = 0. In particular, ¢, can be computed on z = 0. This stress at z = 0 plus the axial stress in
the fiber at z = 0 must be balanced at the other fiber end by an appropriate average stress. The leading order term
in eqn (52) at z = 1 plus a smaller correction arising from terms computed in eqn (A8) is required. This provides
an estimate of the creep strength of the composite material to higher order.

The form of v, is such that on z = 0

-

do,. &%,

N
n e arén (AID

because, through (6v,/ér)?, &, depends on #°. Therefore, on z = 0, eqn (A8) becomes

de,, v, 1év, 1 d%,
\,:iﬂglvm,n[,’ téy, 1 } (A12)

ar P rdr 20rdm

Since dv,/0r = 0 there, on z =

o 2 2 ~ 2112
=1 {0, v, ov,
w=v| ()« () + ()] A1

with v, and v, given by eqns (A1) and (A2). To compute the higher order terms in 6,, on z = 0, eqn (A12) can be
integrated subject to

c,(1,0) =0, (Al14)

which is equivalent to eqn (A10) with the leading order term (i.e. the first term on the right-hand side) omitted.
The result for o,,(r, 0) can be used to compute the axial stress from

0..(r,0) = 0, (r,0)+ S..(r,0) - 5,.(r, 0). (A15)

The net resultant in the boundary layer is
i
2n j o..(r,0)dr = 8" Nm, (A16)

which defines N. Two cases can be considered. One situation arises if g is large or infinite and there is little or no
slip at the fiber-matrix interface. This is the high drag case. In that situation N only becomes important in the
creep strength at small volume fractions of fibers. The other case is where y is small or zero so that the matrix is
free or almost free to slip against the fiber without drag.

High drag interface

In this case, D in eqn (51) is large only if ¢ is small. With D large, the leading order stress estimate at z = |
can be modest in magnitude and the higher order corrections are significant. Investigation of the velocities in eqns
(A1) and (A2) reveals that when a is small, the term containing p can be neglected and the effective strain rate ¢,
on z = 0 is almost uniform except when r is just slightly larger than a. However, the strain rates tend rapidly to
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zero at r = a and according to eqns (A4)—(A6) so do the deviatoric stresses. Consequently, the small region around
the fiber with r slightly larger than a will contribute very little to the stress resultant N. In view of this, a treatment
will be reasonably accurate with &, taken to be uniform everywhere on z = 0 but with the strain rate components

allowed to vary otherwise according to eqns (Al) and (A2).
With the strain rates computed from egns (A1) and (A2) (with g — ) eqn (A12) becomes

sTa 1 0F(r,a,
%: —%821—")/"'5[ J. pF(p,a n)dp-——F(r a,n)+——(;rﬁl):| (A17)

With e, uniform, this integrates, subject to eqn (A14) to give
st ("
L [7 J: pF(p,a,n) dp—G(a,n)—3F(r,a,m)+1F(1, a, n)]. (A18)
On z = 0, from eqns (A4) and (A6)

Sa—s, = 32 [mr an)— f pF(p,a,n) dp] (A19)

SO

0, = &'~ wind [3F(r a,n)+iF(1,a,n)—G(a,n)] (A20)
which is valid for r close to 1 but suspect for r close to a. Calculation of N from eqn (A18) then gives
N =45 lngll= nd [2(2 +a*)G(a,n) +3(1—a*)F(1,a,n)]. (A21)

This result is most readily utilized for even integer positive values of n. In that case, calculation of F(1,a,n) and
G(a,n) can be carried out by binomial expansion. In addition, the leading terms in ¢, can be computed at r = 1.
The result to leading terms is

_M__l)a2+

N=1 6n(n—3)

(A22)

Low drag interface
In this situation, u is close to zero. The limiting case of u — 0 (no drag) will be considered. As a consequence,

the velocities in eqns (A1) and (A2) become

S A23
z l _az ( )
and
_ 6 1 a? A2

PE T2\ T (A24)
and D = co. This is a planar flow in the fiber direction, as would be expected when there is no drag. The effective
strain rate is

é 1a*]"?
Ee_l_az 1+§r7 (A25)

and integration of eqn (A12) gives, on z = 0,

2 6 1/n "1 ]a (1—n)/2n 2
=="3\i=a) ) ‘+§r«] . (429

The deviatoric stresses are such that

2/ & " La* [t =23 g2
S.—8S, = 1=z 1+ 3 r4:| [2 + Eﬁjl. (A27)
Finally, the stress o,,, the sum of eqns (A26) and (A27), can be integrated to give
4/3 1 1 a4 j(1—n){2n 3 a4

Note that when a = 0, N = 1, as in eqn (A22).



